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Abstract: The energy release rate ( E R R )  of  crack growth as the energy change at the 

same time t between the two states o f  the structure is redefined, one is with crack length a 

under the loading ~ ( t )  , the other is the state with crack length a + A a under the same 

loading condition. Thus the defined energy release rate corresponds to the released energy 

when a crack grows from a to a + Aa  in an infinitesimal time. It is found that under a given 

loading history, the ERR is a function of  t ime, and its maximum value should correspond 

with the critical state for  delamination to propagate. Following Will iam's work,  the explicit 

expressiom of  ERR for  DCB experimental configurations to measure the interfacial fracture 

toughness have been obtained through the classical beam assumption. 

Key words: composite laminate; viscoelastic model; analysis delamination 

Chinese Library Classification: 0346.1 Document  code: A 

2000MR Subject Classification: 74D10; 74F20; 74R10 

Introduction 

Generally speaking, a crack in viscoelastic materials will grow in some unknown speed even 

if the applied load is quasistatic, thus the main difficulty is induced in derving the energy release 

rate. 

Knowledge of the condition governing the delamination in composite laminates with 

viscoelastic layers is of paramount importance in practical applications. For example, in plastic 

encapsulated IC packages, the interfacial delamina;ion between the Silicon die and viscoelastic 

epoxy molding compound under the thermal loading is the main failure mode of the structure E1'2] . 

The phenomenon of crack growth in a general, linearly viscoelastic and isotropic material has 

been extensively studied during the past two decades [2-10]. Many theories proceed directly from 

an extension of Griffith criterion of overall energy conservation for a system involving energy 

dissipation. Generally speaking, for a problem with moving boundary such as crack growth, the 
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correspondence principle that was originally proposed by Alfrey [11] to establish the relationship 

between the elasticity and viscoelasticity in quasi-static problem is not valid. Thus it restricts 

people to derive the stress and strain field. Especially for interfacial crack between viscoelastic 

layers, the analyses are much more difficult than their elastic counterparts. It seems that currently 

the only available results are those for Mode III loading [12'13] . 

The main difficulty in deriving the energy release rate of crack propagation in viscoelastic 

materials is due to that the crack will grow in some unknown speed even if the applied load is 

quasistatic. In this paper, we redefme the energy release rate (ERR)  of crack growth as the 

energy change at the same time t between the two states of the structure, one is with crack length 

a under the loading a ( t ) ; The other is the state with crack length a + A a under the same loading 

condition. Thus the deffmed energy release rate corresponds to the released energy when a crack 

grows suddenly from a to a + A a .  It is found that under a given loading history, the ERR is a 

function of time, and its maximum value should correspond with the critical state for delamination 

to propagate. Base on such definition of ERR, its analytical expression can be derived easily by 

getting rid of the effect of crack growth speed. Following William's work [14] , the explicit 

expressions of ERR for widely used experimental configurations to measure the interfacial fracture 

toughness have been obtained through the classical beam assumption. Thus it becomes easier for 

us to use the standard experimental setups to measure the critical value of ERR for viscoelastic 

laminates. 

1 ' G e n e r a l  F o r m u l a t i o n s  

It is a well-known fact that during deformation a viscoelastic material can store a certain part 

of energy. At the same time it will also dissipate a part of energy under a given "loading history. 

Only the par t  of energy stored in the material contributes to the released energy during crack 

propagation. In this section of the paper, the stored energy and dissipated energy will be 

expressed in simple forms based on given constitutive relation. 

For simplicity, here and in the sequel, we 'discuss only the case of small strain and 

displacements. The classical linear viscoelastic constitutive relation without aging can be written 

in from of Stieltjes integrals or Stieltjes convolutions as follows E4, 15]. 

a i / ( t )  = _ r i / k t ( t -  r ) d e k t ( r ) ,  (1) 

Y ei~(t) -- 0_f i ik l ( t -  r ) d a k t ( r ) ,  ( 2 )  

where the origin 0 -  of time is taken previous to any loading, the kernels ri/kl ( t )  (relaxation 

function) andf~k~ ( t ) (creep function) are tensors of the fourth rank. They are suppose to exhibit 

the classical symmetric relations encountered in linear elasticity. These properties of symme W 

come partly from the symmetry of the strain and stress tensor ~i/, al/, and partly from some 

specific assumption like applicability of Onsager principle in the problem. Eqs. ( 1 )  and ( 2 )  

include the case where the strain history or stress history has a step jump at t = 0.  If we take 0 

instead of 0-  , Eqs. ( 1 ) and (2 )  give the constitutive relations for continuous strain or stress 

history. 

For the given constitutive law, the elastic energy stored per unit volume at time t can be 
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expressed as follows[aS] : 

i f ,  f, 
W ( t )  = 2 J 0 - J 0 - r z # t ( 2 t -  u - v ) d e i ~ ( u ) d e k t ( v )  = 

1 f' f' 
a i j ( t ) e i j ( t )  - ~-j0_J0_f/#z(2t - u - v ) d a i }  u ) d a k z ( v ) .  (3) 

The rate of the dissipated energy density can be written as 

S ;i D ( t )  = - ; O- _ "ri# l ( 2 t  - u - v )de0 (u )dekz  v) = 

]fo- o- fO'kz (2 t  - u - v ) d a ~ i ( u ) d a k z ( v  >I O, (4) 

where r0.kz (2 t  - u - v ) ,  Jrijkt (2 t  - u - v)  means a derivative with respect to time t .  As a result, 

if we can derive the strain or stress field for a given loading history, the stored energy and 

dissipated energy can be obtained through Eqs. (3) and ( 4 ) .  

Following the work of Will iam' s [14] on elastic laminate, we consider a delamination as 

shown in Fig. 1, where the upper and lower layers are thin viscoelastic sheets with width B and 

thickness h ,  respectively. The loading will be considered to be uniform in the width direction 

giving uniform conditions along the crack front. Let us consider the end of the delamination in 

which bending moment M 1 ( t ) ,  M: ( t ) are applied to the upper and lower sections respectively at 

the section A B .  By assuming that the crack grows from A B  to CD instantaneously at some load, 

the energy release rate can be expressed in the form as 

1 (dvo dr./ (5) 
G = B k  ~aa d a  1 '  

where U~ is the stored energy in the specimen, and Ue is the external work performed. 

For the case of a linearly elastic beam under pure bending, the equations for strain, stress 

and deflection are as follows: 

e ( y )  M y  (6) 
- E 1  ' 

a ( y )  - M y  (7) 
I ' 

d~-w d~ M (8) 
d x  z - d x  - E l '  

where E is the axial Young'  s modulus, # is the rotation of the cross-section, and I is the second 

moment of the area. For a rectangular beam, I is given by 

I = B H Z d H  = B h  3 , (9) 
h 

where B and 2h are width and height of the rectangular cross-section. 

In the following, we use the elastic-viscoelastic correspondence principle to derive the 

counterparts of Eqs. ( 6 ) ,  (7) and (8) in viscoelastic casein order to obtain the energy release rate 

as shown in Eq. (5) : 

1) Replacing E ,  the elastic modulus, by s~: ( s ) ,  the Laplace transformed quantity, one 

obtains the corresponding Laplace transformed quantities as follows: 

e ( y , s )  = -  Y---- III d~ 1 . ~I 
I sE(s) '  d~ = 7 sE(s ) ;  (10) 
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2) Taking the inverse Laplace transformation of Eq. (10 ) ,  the strain and rotation for a 

viscoelastic beam are obtained as follows: 

~ f ~  d ~ ( r r )  de  l f* d M ( r ) d v  ' e ( y , t )  = -  f ( t -  z-) d r ,  dx  - I f ( t -  z - ) ~ -  (11) 

where f (  t - v) is the creep function as defined before. 

If the crack tip is taken to be originally at point 0 on cross- section AB and then to move to 

point O' on CD ( F i g . l ) ,  we may take the original rotation as r at CD and r + ( d r  

at A B .  When the crack moves from 0 to O ' ,  the change in angle in the upper and lower beams 

respectively at cross-section AB is 

(dr dr a dr dr a 
da  daa] ' da  d~a } ' (12) 

respectively. 

The work done by the applied load when the crack propagates from points 0 to O' is 

( [~_-/d9~1 dr ga + M , ( t )  8a . ( 1 3 )  3U~. Ml - t ) ~ da  da  - da  da  

Therefore we have 

dU~. ( 
da  - M l ( t )  

d~l dr / \ 
) - + t ) / d r  dr 

da  daaJ - ~ da  

~o d ~  - d r  d r ]  + 

1 f '  dM2(V)d r  1 f '  d M ( V ) d r ]  (14) M: ( t ) [~ ,_  _ f 2 ( t  - r )  d ~  - 7 _ f ( t  - v )  ~ ] ,  

where the lower index 1 and 2 means the quantifies corresponding to the lower and upper beams, 

and I ,  M and f a r e  the quantities of the composite. The change of the stored elastic energy for the 

crack to propagate 3a is the difference between the stored energy of two beams with length ~a 

under the action of M 1 ( t ) ,  M~ ( t ) ,  respectively, and the composite beam with the same length 

under the action M ( t ) ,  here 

M ( t )  = M l ( t )  + M 2 ( t ) .  (15) 

The stored energy can thus be calculated as 

dU~ B r h/2 rf'F' (2t  u v ) d e ( u ) d e ( V ) d u d v ] +  
da  - ~J-h/ ,_  dyt . )oo o r - - d-u ~-v 

B fhl/~ [ f' f '  
2 T l J _ h / z d y [ j o J o r l ( 2 t  - ,, - v)  - -  

B rh,/2 [ f '  f '  
z ' 2 2  h O I - - /  dy[  I o l o r a ( 2 t  - u - v )  

d e 1 ( u )  d e l ( V )  d u d v  ] + 
du- dv 

de,  ( u )  d e a ( V )  d u d v  ] 
d-u- dv ' 

(16) 

where r l ( t  - r ) ,  r2( t  - r ) ,  r ( t  - r )  are relaxation functions of the lower, upper and 

composite beams, el ( t ) ,  e2 ( t ) ,  e ( t )  are corresponding strains under the action of M 1 ( t ) ,  

M 2 ( t ) ,  M ( t ) ,  and in deriving Eq. (16) ,  we assume that the crack propagates from 0 to O' 

instantaneously. Substitution of Eqs. (14) and (16) into Eq. (5) gives the energy release rate for 

the interlaminar crack to propagate in a viscoelastic composite laminate. In what follows, we 

consider the two loading histories. 

1) M ( t )  = M o H ( t ) ,  M l ( t )  = M m H ( t ) ,  M2(t  ) = M02H(t) ,  
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where H ( t )  is the Heaviside function. For such loading case, the strain and rotation can be 

expressed in the form as 

- 

" (17) 
de  dr d ~  1 

1 M o f ( t )  ' 1 M o l f l ( t )  - M ~ f 2 ( t ) .  
daa - I da  - 11 ' da  - I z 

Substitution of Eq. (17) into Eqs . (14)  and (16 ) ,  then into E q . ( 5 )  yields 

1 
- + + 

B B 

2 B I J o J o r ( 2 t  - u - v ) f  ( u ) f  ( v ) d u d v  - 

M01 f t f '  
2 - ~ j 0 j 0 r l ( 2 t  - u - v ) f ;  ( u ) f ;  ( v ) d u d v  - 

M ~  ft ft r2(2t  - u - v) f~  ( u ) f ' ~ ( v ) d u d v  (18) 
2 BI z J0 J0 - - " 

According to Eq. ( 1 8 ) ,  if we know the constitutive relation of the beams and the applied 

moments at the crack tip, the energy release rate can be calculated easily. 

2) M ( t )  = M o t ,  Ma = Mol t ,  M2 = Mo2t.  

For such linearly increasing load, the swain and rotation of a beam are given as follows: 

M~ f t -" ~ _  
o]( t e - ] - - v ) d r  = -  J ( t )  (19) 

de  n07 f '  ~ - ~ J ( t )  (20) - j o f ( t  - r ) d r  = d a  

Therefore the energy release rate is given by 

G - M ~  1 B  ~ M o l  J a ( t )  - + M o J ( t )  l + _~__f[ l ~ M ~ j 2 ( t )  - 1 M o J ( t ) ]  + 

2 B l J o J o r ( 2 t -  u -  v)  ( u ) J ' ( v ) d u d v -  

M21 f t f t  
2- aJ0j0rl(2t- u - - 

M L  f t f '  
2BI zJoJor2 (2 t  - u - v ) f 2 ( u ) J z ( v ) d u d v .  (21) 

Equations (18) and (21) can be used to calculate the energy release rate for viscoelastic laminate 

from the local moments at the crack tip. whatever happens in the rest of the beam is uniportant. 

In what follows, we will use the configuration of DCB test as an example to derive the energy 

release rate for particular cases. 

2 E x a m p l e s  

The most common test for mode I is shown in Fig. 2, where we assume that the upper 

beam is viscoelastic, and the lower beam pure elastic. For symmetrical loading, we have 

M2 = - Ma = p a .  The creep function of the upper viscoelastic beam is taken as 

f l ( t )  = f01(1 - e - t / t , ) H ( t ) .  (22) 
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Since 

G A 

. . . .  o i  

i i 

D B 

Delamination 

r ( t -  r ) f ( r ) d v  = t ,  (23) 

~P(t) 

L 
I T M  a ~ ,P(t)  

Fig.2 The double cantilever beam (DCB) 

testing configuration 

Fig. 1 Delamination geometry in 

composite laminate 

one obtains 

1 tl 
r l ( t )  = Tot +~ol  $ ( t ) "  (24) 

The lower beam is elastic material, therefore 

r2 = E2, f2 = lIE2. (25) 

According to the rule of mixture, one can derive the relaxation function of the composite as 

follows: 

1 1 1 ( ~ - 1 )  1yoxl r = ~- r l  + ~-r2 = E2 + + ~- 3 ( t ) ,  (26) 

f ( t )  = fo(1  - e - t / " ) H ( t ) ,  (27) 

where 

t '  - tl (28) 
1 + E2fol" 

fol  

f0 - 1 + E2f01' 

For such a laminate, Eq. (18) becomes 

1 1 Moz H ( t ) [  ~ Mozf2-  1Mof]  

M~ t f ' r ( 2 t -  u - v ) f ' ( u ) f ' ( v ) d u d v  - 
2BIJoJo 

r l ( 2 t  - ~ - , , ) f ' l ( u ) f ' ~ ( ~ ) d u d ~  - 2 4 g o I ~  " 2RIi o o _ _ 

Equation (21) becomes 

G _ Molt 1 1 M o j ( t ) ] +  ~_t_[_~2Mo2J2(t) ] 

M ~  u - v ) J ' ( u ) J ' ( v ) d u d v  - 
2 BlJo Jo 

( M o ~ t )  2 

2BI~ 3 o 2BI212 

(29) 

+ 

( 3 0 )  
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For the loading condition P = p 0 H ( t ) ,  substituting the constitutive relations (22)  - (27)  into 

Eq. ( 2 9 ) ,  one obtains the energy release rate as follows: 

poa~-[r [ l _ e _ , / ,  1 ,/q)Z 1 te -2 t /q]  1 ~_7} 
G --- ~ i  1 [./01 ' - ~- (1  - e-  - ~- t l  + o~- ' (31)  

where I1 =, Bh3/12.  For electronic packages,  the laminate can be considered to consist of  two 

layers, one is the die, the other layer is epoxy molding compound,  the material constants are as 

follows : 

E 2 = 1 5 0 G P a ,  f01 = 0 . 1 ( 1 / G P a ) ,  t~ = 1 0 1 2 ( s ) .  ( 3 2 )  

The dimensionless energy release rate G/Go versus time t / q  is shown in Fig.  3 ,  where Go = 

Po a2/(2BE2 11 )- 

For linearly increasing loading P = P0 t ,  one can obtain 

J l ( t )  = f l f l ( t -  r ) d r  ~ f o l ( t -  t l )  + f o l t i e - ' / q ,  

J ( t )  = ~ ' f ( , -  r ) d r  = f o ( t - t ' ) + f o t ' e  - , / ' .  
30 

(33)  

~'~ 127 / : . . . . . . . . . . . . . . . .  N 

6 2 /  �9 . . . . . . . . . .  

4 ~  . . . . . . . . . .  

J 

0 2 4 6 8 l 0 
Tinae ~/t] 

Fig. 3 The energy release rate versus time 

for instantaneously applied loading 

45~, . . . . . . . . . . . . . . . . . . . . . .  

4o! "'\ . . . . . . . . . .  

30! i ~ ' ~ " : z i . ~  

2 5 !  - " . . . . . . . . . .  _ ~  . . . .  --- 

2(J L 
0 0.2 0.4 0.6 0.8 t.O- 72 1.4 

Tinle t / t  

Fig .4 The energy release rate versus time 

for linearly increasing loading 

Substitution of  Eq. (33)  into Eq. (30)  yields 

{ ( ) ( ,1 ( M i n t )  2 1 + E 2 f  m 1 tl t le_,/q E2fol 1 - t + + 
G - 2BE~I1 - t + t t 

- -  - -  ~ e - ' - , /* ,  ( 3 4 )  Ezfm 1 - t + 2 e - ' / q  + "~ + t + 3 t~] 

The energy release rate G~ G1, where G a -- (M01 t )z /2  BE, 11, versus time t~ t a is shown in 

Fig ~ We can easily find that even if the generalized Maxwell constitutive ielation for the 

viscoelastic layer is taken, the explicit expression for the energy release rate based on our 

definition can still be derived. The energy release rate is a function o f  time as expected for 

viscoelastic materials. At time t ,  it corresponds to the released energy per unit propagation length 

of  the crack. The main assumption is that the crack propagates from a to a + A a instantaneously. 
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